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Abstract
A false alarm rate of online anomaly-based intrusion detection system is a crucial concern. It is challenging to implement
in the real-world scenarios when these anomalies occur sporadically. The existing intrusion detection system has been
developed to limit or decrease the false alarm rate. However, the state-of-the-art approaches are attack or algorithm
specific, which is not generic. In this article, a soft-computing-based approach has been designed to reduce the false-
positive rate for hierarchical data of anomaly-based intrusion detection system. The recurrent neural network model is
applied to classify the data set of intrusion detection system and normal instances for various subclasses. The designed
approach is more practical, reason being, it does not require any assumption or knowledge of the data set structure.
Experimental evaluation is conducted on various attacks on KDDCup’99 and NSL-KDD data sets. The proposed
method enhances the intrusion detection systems that can work with data with dependent and independent features.
Furthermore, this approach is also beneficial for real-life scenarios with a low occurrence of attacks.
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Introduction

The rapid development of network systems has a big
threat from the intrusions. Intrusion detection systems
(IDS)1,2 are widely used to mitigate the various types
of attacks. Broadly, IDS can be classified into three
categories: network-based intrusion detection systems
(NIDSs), distributed intrusion detection systems
(DIDSs), and host-based intrusion detection systems
(HIDSs). The NIDS’s objective is to defend against the
threats related to network, HIDS’s aim is to figure out
the local system anomalies, and DIDS is responsible
for improving the performance based on IDS agents’
information.

The detection methods for these IDSs are of three
types: signature-based detection, anomaly-based detec-
tion, and hybrid detection. An anomaly-based IDS3 can

figure out abnormal network/system behavior from the
comparison of normal profile with the current system.
If deviation is found beyond a certain threshold, then
the event is declared as abnormal. A signature-based
IDS4 identifies the attack by comparing the stored sig-
natures with the current incoming event. Here, the
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signature is a description of some features for a known
attack. An alarm would be triggered by the absolute
match. The combination of signature-based detection
and anomaly-based detection is called a hybrid IDS.5,6

The IDS effectiveness can be calculated from the
probability of a positive detection on actual anomaly
occurrence. In the application domain, the IDS effec-
tiveness is considered from its capability to lower down
the false-positive rate (FPR) instead of increasing the
true-positive rate (TPR).7 Therefore, the crucial chal-
lenge is to lower down FPR with a minimum decrement
in TPR to maintain the detection quality at a practical
level.

Generally, the normal class is comprised of various
disjoint subclasses. The application protocol (Simple
Network Management Protocol (SNMP), File Transfer
Protocol (FTP), Hypertext Transfer Protocol (HTTP),
etc.), transport protocol (User Datagram Protocol
(UDP), Transmission Control Protocol (TCP), Internet
Control Message Protocol (ICMP), etc.), and other net-
work communication traffic have various subclasses.
The accounting of subclasses can increase the perfor-
mance of IDS.8,9. After that the subclasses are decom-
posed into more specific subclasses, which is mentioned
in various studies.10,11 The user-defined multi-level hier-
archy has the potential to maximize the accuracy of the
anomaly detection system. These research studies are
efficient to improve the anomaly detection system for
multi-level subclass hierarchy. However, the limitation
of these methods is of their practical implementation
because of certain reasons.

� Users required expert knowledge. The users need
to explore the hierarchal data structure to define
the subclasses. They need to know the working
of IDS thoroughly, which needs training and reg-
ular interactive session.

� Specific for certain IDS. Most of the IDS are
applicable for specific domain only. It is critical
to choose the most relevant IDS where the sys-
tem is comprised of different domains.

So the fundamental issue is to minimize the FPR of
IDS in practical solutions. In this study, we develop an
autonomous system called soft-computing-based anom-
aly detection (SCAD) for hierarchical data.

SCAD generates fundamentally distinct ‘‘points of
view’’ for ordinary information to which are compared
with test cases. With contextual anomalies in compari-
son to the whole data set as ordinary, but an anomaly
provided some context,12 we have an especially reverse
notion that we called contextual inlier. In this regard,
we have a special focus on the contextual anomalies.
Some test cases are normal but appear to be anomalous
to few information subclasses. The principle of our
technique is that only after comparing an anomaly to

every subclass, it should be declared normal or anoma-
lous. SCAD takes all subclasses into account, which
strengthens the proposed technique in efficient anom-
aly detection. Our contribution is as follows:

1. We designed a general-purpose IDS to improve
the FPR, where the data could be represented
with a hierarchical structure.

2. SCAD is more practical than most of the previ-
ously developed techniques which benefit from
a hierarchical framework due to the following
reasons:
(a) It is a generic approach for an anomaly

detection system which is designed to
work with various black-box methods.

(b) The exploration of hierarchy algorithm is
fully automated and the user does not
need to be domain-specific or to create an
algorithm for the hierarchy.

3. We evaluated the SCAD-RNN and existing
IDSs capacity to increase the efficiency with
benchmarking data sets.

Related work

Recent IDS13–16 extracts the characteristics from pay-
load packets to train the one-class classifiers which are
capable of identifying abnormal network traffic.
Mirsky et al.15 suggested Kitsune, the devised model
fetch the implicit traffic on the network at runtime
based on contextual characteristics with a tiny storage
footprint to build one-class auto-encoders automati-
cally. They demonstrate that Kitsune can almost tackle
the problem well, but offline or batch IDSs are even
better in some instances. The extracting functions for
the IDSs suggested by Nguyen et al.13 and Duessel
et al.14 constitute typical octets and enable syntactic
connect to the communication protocol for incorpora-
tion. Here, the author extracted functional vector and
used in both the IDS with the one-class support vector
machine (OCSVM) kernel (radial basis function (RBF))
and other IDSs9,15 in a similar way. Ying et al.17 pre-
sented an IDS for cloaking attack with clock skew-
based IDS as a solution for controller area network.

The above IDSs supposed that information can be
processed separately. The distinct information in the
documents may be linked, which can provide an effec-
tive context for anomaly detection as per their relative
order of occurrence.18 Therefore, sequential IDSs are
another significant category of IDSs. IDS operating on
byte sequences in a packet or on packet continuation
instead separate function vectors. Recently, this type of
IDS has become more important because of the ever-
increasing abundance of sequential information in
numerous real-life scenarios. Gupta et al.19 analyzed
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that large-scale and Internet processing requirements
usually make it more demanding to analyze anomalies
than in non-sequential information. In Wang et al.,20

Swarnkar and Hubballi,21 and Wang and Stolfo,22 the
sequential IDSs are suggested for the detection of
anomalous sequences containing subsections of which
their inherent frequency is unexpected. The latest is an
IDS known as Rangegram,23 which effectively pro-
duces a Normality model within ordinary sequences of
the high-order n-grams with a maximum and minimum
range of frequency. In a test sequence, the author ana-
lyzed that the n-grams increased from the normal range
in case network intrusion.

The sequential IDSs like Tian et al.,23 Michlovský
et al.,24 and Haddadi25 analyzed based on the sequences
they contain to identify ordinary sequences with much
difference. These IDSs use a version of the SSK26 to
implicitly map sequence into a large function space
where distances between sequences are equivalent. For
instance, in a semi-supervised situation, Tian et al.23

applied the SSK along with OCSVM for intrusion
detection in computer scheme that is described in
abnormal system subsequences. Because of their capac-
ity to combine various base detectors with a view to
optimizing the bias-variance trade, anomaly detection
ensembles have grown popular in latest years.13,18,27,28

The IDSs suggested in Perdisci et al.28 and Nguyen
et al.13 have been designed with the support of a set of
OCSVM basic detectors, trained with various function
subsets to obtain distinct information representations
and thus to improve detection precision. Likewise,
auto-encoder detectors in the Kitsune15 set model dis-
tinct function subsets of ordinary network packets in
their auto-encoders. In this research, the mentioned
technique is the detection of anomalies, even though
the base detectors of our ensemble are not represented
by distinct types of ordinary information, as opposed
to the ensembles outlined in literatures,13,15,28,29 and are
driven by the hierarchy. Furthermore, our approach
can be implemented automatically to any soft-
computing technique and does not just concern a par-
ticular recurrent neural network (RNN) type. The user
can use any soft-computing-based technique with the
first stage of the proposed SCAD model.

The existing techniques applied the single hierarchi-
cal system to enhance intrusion detection based on
anomalies. In order to enhance detection precisely
under a controlled framework, Peddabachigari et al.30

employed the support vector machines (SVMs), deci-
sion trees (DT), and a fusion classifier of DT-SVM.
The group of three incorporated into a hierarchy of
classifier. Kim et al.9 designed a hybrid IDS by inte-
grating misuse detection with anomaly detection. The
author broke down ordinary information into a hier-
archical subclass tree and OCSVM is created for each
subclass. These techniques need to attack information

labeled. However, it is challenging to break down the
ordinary data into subclasses only on account of their
resemblance to recognized attack classes. However, our
strategy requires no marked information and records a
more natural decay based exclusively on the similarity
between ordinary data cases. In combination with the
unchecked clustering algorithms, Xiang et al.31 have
created a hierarchical classification32 process that
improves the initial training label as per original data
set composition. However, user assumptions required
the clustering algorithm needs to define the user
assumptions for the distribution detail of data. The
initialization of the number of classes required is a
costly numerical optimization in the convergence pro-
cess. The hierarchical exploration is conducted based
on correlations clustering (CC).33 As CC has been
designed to autonomously discover the maximum
amount of classes, it automatically decomposes the
ordinary class into subclasses by our hierarchical clus-
tering algorithm. The method defined in this process is
not a hierarchical approach for classification since
every hierarchical node is not being taken as a decision-
maker compared with route node;32 indeed, instances
which are ultimately identified as anomalies by our
method will have been passed through and checked at
all nodes. Although, the cloud-based techniques are
designed for load balancing by enhancing bat algo-
rithm, Luhach and colleagues34,35,36 presented an effec-
tive framework based on service-oriented architecture
(SoA) for e-commerce applications and Internet-of-
things (IoT) applications. The benefits of hierarchical
anomaly detection are also reported by Robinson
et al.11 The anomaly detection process is the sum of
unsupervised learning and discovery of hierarchical
data in the training set. Similar to the proposed
approach, this model enables the user to select anoma-
lies with a wide variety of definitions.

The structure is meant for sequential data processing
which can limit the new anomalies exploration. As
opposed, the sequential as well as non-sequential infor-
mation can be processed by our structure. Therefore,
the proposed model is indifferent to the information
type and can be helpful in every field of abnormal iden-
tification where the information is hierarchical, as long
as it is an equally similar example, graph data can also
be processed on it.27 In addition, the strategy of
Robinson and other parties need consumers who are
not necessarily known to enter semantic hierarchy, such
as moment (e.g. days, months and years) or place hier-
archy (e.g. state, city, town), particularly in a dynamic
situation. Of course, this limits their usability for cus-
tomers who have expert knowledge of the hierarchical
interactions in the information and the method of iden-
tification of anomalies. Therefore, the customer should
provide the connections between information charac-
teristics, ontology, and the interaction between
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anomaly detectors to detect any anomalies. Instead, we
do not require customers to be domain specialists in
our system. However, if consumers have a helpful
knowledge of the data set, they can transmit in the
form of pairwise features. Our approach has strong evi-
dence to become more practical and applicable to the
existing black-box-based IDS.

Deep learning, a machine learning branch, has
become increasingly common in the latest years. The
performance of a deep learning approach is far better
than traditional approaches in intrusion detection. In
Javaid et al.,37 the authors detect the anomalies on the
basis of the neural network, and the experimental
results demonstrate that deep learning can be used to
detect anomalies in networks. In Tang et al.,38 the
authors applied the self-taught learning (STL) with
deep learning and propose in an NIDS. The method is
shown to be more efficient when comparing its perfor-
mance with those found in past research. However, the
authors focused on the capacity of deep learning to
reduce features. For prior-training, it primarily utilizes
deep learning techniques and conducts classification
through the traditional supervisory model. Applying
the deep learning technique to directly conduct classifi-
cation is not prevalent, and very few articles are
researched on multi-class classification. RNNs are
regarded to be reduced-size neural networks, according
to Sheikhan et al.39 The author recommended docu-
menting a three-layer RNN architecture with the input
of 41 characteristics and output of four categories of
intrusion for IDS based on misuse. However, layer
nodes are partially connected, features of high-
dimension did not study for deep learning for hierarchi-
cal data with binary classification. Deep learning tech-
niques have flourished rapidly with the ongoing growth
computing power and big data. It has been commonly
used in multiple fields. RNN used for intrusion detec-
tion via deep learning method presented in this docu-
ment followed similar thinking. We use the hierarchical
exploration and RNN-based model for classification
based on static and dynamic training rather than pre-
training only. In addition, NSL-KDD data set has used
with the separate training set and testing set to assess
their performance in identifying binary and multi-class
network intrusions and the comparison performed with
Naive Bayesian, J48, artificial neural network (ANN),
SVM, Random Forest, and other machine learning
techniques mentioned in previous studies.

Anomaly detection in hierarchical data

The data sets with meaningful hierarchical structure
can be used to minimize the FPR in the IDS. Here, the
SCAD for IDS is presented for hierarchical data. This
process is accomplished in two steps: (1) explore the

hierarchical structure of data and (2) deep-learning-
based anomaly detection to reduce the FPR in a dis-
covered hierarchical structure.

Exploration of hierarchical structure

In this stage, the normal data W is considered for train-
ing to explore the hierarchy structure of the data set
(see Figure 1). To explore the level of the hierarchy,
divisive hierarchical clustering technique40 has been
applied.

Since no prior information is available for the data,
we conduct the CC33 to classify the number of subsets
in the data set W = y1, y2, . . . , yn. The CC does not
need to provide the number of clusters, rather it needs
to provide the correlation values between the instances.
The positive correlation between yi and yj indicates that
they should assign the same subset, otherwise attempt
to assign a different subset.

We employed the settings of anomaly detection as
semi-supervised learning;18 in this, normal data
instances W are provided as the training data set. ‘‘IS-
A’’ hierarchy32,41 applied to unearth the hierarchy in
the form of a tree structure.

In CC, we used supervised classification at the first
stage to define the available labeled training objects.
After that, we insert the unlabeled clusters in the base
of the representative cluster on similarity calculation.
The input to Algorithm 2 is a pairwise similarity calcu-
lated as per Algorithm 1.

The similarity of yi and yj is the sum of per attribute
similarity for total attributes. It is calculated as per
equation (1)

sim yi, yj

� �
=
Xd

j= 1

s yi, yj

� �
ð1Þ

Figure 1. Exploration of level of hierarchical structure.
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The pairwise similarity matrix values are calculated
with equation (1) and input to Algorithm 2. But, while
deciding the similarity function, we follow equation (2),
yi and yj should follow the same subclass more than ym

and yn are believed to belong to the same subclass. The
user needs to decide the similarity function on the basis
of their confidence in correct implication

sim yi, yj

� �
=

1, if s yi, yj

� �
. s ym, ynð Þ

0, otherwise

�
ð2Þ

The objective of CC is to achieve the maximum pair-
wise agreement with the calculation of the highest value
of agreement objective function AGMCMw(x)

X
CMij2CMw+

jCMijj � xij +
X

CMij2CMw�
jCMijj � 1� xij

� �
ð3Þ

where CMw+ is a positive correlation and CMw� repre-
sents the negative correlation values in CMij.
AGMCMw(x) function is a set where x= fxijgi 6¼j^i, j= 1, 2, ::l

of rate for

xij =
1, yi ^ yj are assigned to the same subset
0, yi ^ yj are assigned to different subset

�
ð4Þ

The assignment of x for AGMCMw (x) function per-
forms the portioning of data set w. The CC method
choose the maximum value of AGMCMw(x) for optimal
portioning. In this study, we adopt the heuristics men-
tioned in Gal-Oz et al.42 because it has the complexity
O(l2) in worst case and it is a greedy algorithm. In prac-
tice, this is more efficient than AutoClass algorithm43

and K-means algorithm.44

Considering the set W and similarity matrix SMw,
Algorithm 3 used to design the hierarchy l. In the first
step, W is input to the root node in a hierarchical struc-
ture with learned detection model of IDS. Algorithm 2
is used to evaluate correlation matrix CMw from simi-
larity matrix SMw. Algorithm 3 is a recursive invoca-
tion and obtained the sub-hierarchy at l1

i . The sub-
hierarchies are isolated from each other, this process

can be accomplished parallel which can increase the
speed of design.

SCAD

The IDS is usually working in two phases. The IDSs
which are working on fit and predict procedures are
known as a ‘‘block box’’ technique. After exploring the
hierarchy of data set, next, we applied the soft-comput-
ing-based technique to classify the test instances.

Numerical conversion and normalization. The NSL-KDD
data set has a total 41 observations, out of which 3 are
non-numeric features and 38 are numeric features. The
proposed SCAD technique used RNN, which takes the
numeric values. We must convert non-numeric values
in the form of numeric values such as ‘‘service,’’‘‘proto-
col types,’’ and ‘‘flag.’’ The ‘‘protocol type’’ is of three
types ICMP, UDP, and TCP, we encode them into bin-
ary form vector (0,0,1), (0,1,0), and (1,0,0), respectively.

Algorithm 1. The pseudocode for pairwise similarity matrix

1. 8 i, j: sim[i, j]( 0
2. for each w in W do
3. for j = 1 to d do// as per equation (1)
4. total  sum(yi, yj)
5. sim(yi, yj) total
6. for each yi, yj do // as per equation (2)
7. if sum(yi, yj).sum(ym, yn) then
8. sim(yi, yj) 1
9. else
10. sim(yi, yj) 0

Algorithm 2. The pseudocode to calculate correlation matrix.

1. Input: SM — a n3n matrix of similarity values, a data set
W = y1, y2, :::, yn

2. Output: a n3n correlation matrix CM for every pair of
W data set.

3. procedure Calculate CM
4. Matrix CM½n, n�  null
5. Vector V½n�  null
6. loop:
7. for i = 1: ndo

8. Vi  
Pn

j= 1, j!= i
Sij

n�1
9. loop:
10. for i = 1: n do
11. for j = 1: n do

12. CMij  Si� Vi + Vj

2
13. return CM

Algorithm 3. The pseudocode for exploration of hierarchy

1. Input: SM — a n3n matrix of similarity values, a data set
W = y1, y2, . . . , yn

2. Output: l — the hierarchy of W.
3. procedure ExploreHierarchy
4. l0 � dataset W
5. l0

1  SCAD:fit(W)
6. CMw  CalculateCM(SMw)
7. P CorrelationClustering(CMw)
8. for Each subset wi � P do
9. SMwi  DeriveSubMatrix(Di)

10. l1
i  ExploreHierarchy(wi, SMwi , SCAD)

return l
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Similarly, we convert the ‘‘flag’’ and ‘‘service’’ types in
122 and 11 attributes, respectively. Furthermore, the
numerical values have a large scope in the data set,
there is a large difference between the highest and low-
est values. Furthermore, we normalize the values as per
the following equation

yi =
yi �Min

Max�Min
ð5Þ

In recent neural networks, the most important
research is to be done for inputs, output units, and con-
cealed units. The RNN model has information from
the entrants in one-way to the cache units essentially.
The summary of information from the preceding time
clock unit to the current time clock unit is shown in
Figure 2. One-way information is carried out by RNN.

RNN. Hidden devices can be seen as the entire network
storage, which remembers the end of data. We can find
that the RNN will embody the profound learning when
we unfold as shown in Figure 3. For monitored classifi-
cation, learning an RNN strategy can be used as shown
in Figure 2. The directional loop is implemented by cur-
rent neural networks and remember the prior data to be
applied on present output. This is the main difference in
traditional and fuzzy neural network (FNN).

The previous output also has to do with the present
output sequence, the nodes are no longer connected but
concealed states has a link with each other. In addition
to the output of the input layer as well as the output of
the final concealed layer, we can look at hidden units as
the entire network storage reminiscent of the end-to-
end information. We can say that when we unfold
RNN, it embodies profound learning. An approach to
RNNs can be used for monitoring classification learn-
ing. Recent neural networks have initiated a directional

belt, it has an essential distinction from conventional
feed-forward neural networks, able to record and apply
previous information. This represents the key distinc-
tion. The output from the previous iteration is con-
nected with the sequence of current output. Hidden
layers between the nodes are not connected; otherwise,
the hidden layer has connections. The SCAD-RNN
model working is shown in Figure 4.

Methodology of SCAD-RNN model. It is evident that the
SCAD-RNN model is the combination of two mod-
ules: forward propagation and back propagation. In
forward propagation, the output value is calculated,
and in back propagation, the output value is deployed
to pass the residuals to update the weights, which is
similar to the formation of ordinary neural network.
The RNN model present in the methodology could fur-
ther replace with other black-box methods.

As per Figure 3, we applied the unfolded RNN.
To formalize the standard RNN, the training
samples are yi(i= 1, 2, . . . , n), the hidden states
sequence hi(i= 1, 2, . . . , n), and prediction sequence
p̂i(i= 1, 2, . . . , n). Furthermore, the input-to-hidden
weight matrix is defined with Why, the hidden-to-
hidden weight matrix is defined with Whh, the hidden-
to-output weight matrix is defined with Wph, and biases
are bh and bp vectors.45 The sigmoid is defined as e, an
activation function. The SoftMax function evolved in g

classification function.
As per Figure 4 and Martens and Sutskever,45

Algorithm 4 is a pseudocode for forward propagation.
Algorithm 5 is a pseudocode for weight update.

A single training pair (yi, pi) defined as f (u)= LV

(pi : p̂i) in RNN has the association with objective func-
tion,45 the distance function LV calculates the deviation
from actual labels (pi) to predicted labels (p̂i). The
learning rate is defined as be and current iteration

Figure 2. Recurrent neural networks.

Figure 3. The unfolded recurrent neural network.
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presented with k. The pi(i= 1, 2, . . . ,m) defined the
labels in sequence and k is defined as the present
iterations.

The detection model is shown in Figure 4 is the combi-
nation of hierarchical exploration and RNN model. At
this stage, the hierarchical data l has been discovered.
The test data t and l are used in the detection model. This
model checks the node’s data set in the l levels, where t is
normal or not. Once t is found as an anomaly, the process
performed recursively at each child node of the sub-tree.
This process could run parallel or with GPU acceleration
because of the isolation of data set in different nodes and
levels to find the perfect subclass of the intrusion. The
RNN model helps to discover the new attacks and grow/
update the tree structure at runtime.

Data set

In the field of intrusion detection studies, the 2009 pro-
duced NSL-KDD46,47 data set is widely used. This is a

benchmarking data set used by most of the authors.48–50

The data set is vital in solving the inherent redundant
records issue in KDDCup’99 data set. The most frequent
record does not favor the classifier in training and testing
data set. The KDDTrain+ covers the training data set
and testing data set are KDDTest+ and KDDTest-21.
Table 1 shows the different types of attacks and normal
records in the data set. The KDDTest+ subset is designed
named as KDDTest-21, which is more difficult to classify.
The data set is classified in four categories based on the
types of attacks: U2R (User to Root attack), R2L (Root
to Local), Probe (Probing attack), and DoS (Denial of
Services). The testing data contain some attack which is
disappearing in the training set, which strengthens the test-
ing process of IDS.

Evaluation

For the measurement of the results of the SCAD-RNN
model, the largest performance indicator is accuracy,51

Figure 4. Proposed SCAD-RNN intrusion detection system.

Table 1. List of NSL-KDD and KDDCup’99 data set normal and attack classes.

Class NSL-KDD and KDDCup’99 subclasses

Normal Normal traffic
DoS udpstrom, processtable, neptune, mailbomb, land, back, apache2, smurf, pod, teardrop
Probe saint, mscan, nmap, ipsweep, portsweep, satan
R2L guess_passwd, phf, xlock, worm, snmpgetattack, imap, snmpguess, sendmail, xsnoop, multihop, warezmaster,

warezclient, ftp_write, named, spy
U2R sqlattack, ps, xterm, rootkit, perl, loadmodule, httptunnel, buffer_overflow
Total 40 subclasses

DoS: Denial of Services; R2L: Root to Local; U2R: User to Root attack.

Singh et al. 7



used in our model. We implement the detection rate
(DR) and FPR concerning the accuracy. The true posi-
tive (TP) corresponds to the correctly rejected docu-
ments, and it refers to the number of anomaly
documents recognized as an anomaly. This is the equiv-
alent of erroneously refused false positive (FP), which
indicates the number of ordinary documents recognized
as an anomaly. The true negative (TN) corresponds to
the properly recognized ones and refers to the number
of ordinary logs recognized as usual. The false negative
(FN) corresponds to the wrongly admitted ones and it
refers to the number of anomaly records recognized as
usual. The confusion matrix is calculated for binary
and multi-class classification. Our note is as follows:

Accuracy. It is calculated as a percentage of the total
number of records versus classified TP and TN data.
It can be calculated as per the following equation

Accuracy=
TN + TP

TP+FP+FN + TN
ð6Þ

TPR. It is similar to the DR, it is calculated as a
total number of anomalies versus data identified
correctly. It can be calculated as per the following
equation

TPR=
TP

TP+FN
ð7Þ

FPR. It is the percentage of several rejected records
versus normal records in the data set

FPR=
FP

TN +FP
ð8Þ

Thus, the objective of this study is to reduce the FPR
while maintaining the TPR.

Experiment results and discussion

We have used one of the latest and widest profound
frameworks in this study52 for deep learning in Python.
The experiment conducted in a private notebook with
an Intel Core i5-3210M CPU @ 2.50 GHz, 4 GB of
memory. Two experiments for binary category
(Normal, Anomaly) and 5-category classification such
as Normal, R2L, DoS, Probe, and U2R have been con-
ducted for performance analysis of the SCAD-RNN
model. Contrasting experiments are conceived simulta-
neously to compare with other machine learning tech-
niques. We contrasted the output with a naive
Bayesian, ANN, random forest, multi-layered percep-
tron, support vector machines, and other machine
learning techniques in binary classifications, as stated
in Tavallaee et al.46 and Ingre and Yadav.53 Likewise,
we analyze the SCAD-RNN model’s multi-class classi-
fication using the data set of NSL-KDD. By compari-
son, in the five-category classification, we studied the
J48, naive Bayesian, SVM, random forest, multi-layer
perceptron, ANN and support vector machine, and
other machine learning models performance for intru-
sion detection. Finally, with the traditional methods,
we combine the efficiency of proposed SCAD-RNN
model. In addition, we build a used data set referred to
as Sheikhan et al.39 and Yin et al.54 and compare the
output with the SCAD-RNN method of reduced size.

Binary classification

In data preprocessing, the 41-dimensional characteristics
have been mapped to 122-dimensional characteristics. In
binary classification, the SCAD-RNNmodel has two out-
put nodes and 122 input nodes. The epoch count is 100.
In order to train this better pattern, allow 240, 120, 80, 60,
and 20 hidden nodes. The learning rate is set as 0.5, 0.1,
and 0.001, and then comply with the NSL-KDD data set
classifications precision. The experiment result indicates
that the learning rate and hidden nodes are directly related
to the accuracy of the model.

Algorithm 4. The pseudocode of forward propagation

1. Input: Data set W = y1, y2, :::, yn

2. Output: p̂i

3. procedure ForwardPropagation
4. loop:
4. for i = l:n do
5. ti = Whyyi +Whhhi�1+ bh

6. hi = sigmoid(ti)
7. si = Wphhi+ bx

8. p̂i = SoftMax(si)
9. return p̂i

Algorithm 5. The pseudocode of weight update

1. Input: (pi, p̂i) (i= 1, 2, :::, n)
2. Initialize u= fWhy,Whh,Wph, bh, bpg
3. Output: u= fWhy,Whh,Wph, bh, bpg
4. procedure WeightUpdate
5. loop:
6. for j = k:l do
7. LV(pi, p̂i) 

P
i

P
j pij log(p̂ij) + (1� pij) log(1� p̂ij)

. Calculation of cross entropy
between label value and output value

8. d dL=duj

9. uj  uih+ di . Computation of partial
derivative with respect to uj
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The KDDTest+ test set for the two-category experi-
ment for classification. The confusion matrix is shown
in Table 2. In this experiment, the proposed model gives
higher efficiency with 0.1 learning rate and 80 hidden
nodes. The results indicate that when 100 periods are
provided for the KDDTest+ data set, SCAD-RNN
operates at a good DR (84.03%). For KDDTest-21, we
receive 69.75% performance.

The comparison has been conducted on various
machine learning techniques such as Naive Bayesian,
J48, Multi-layer Perceptron, Random Forest, Support
Vector Machine, and other classification algorithms in
Tavallaee et al.,46 and an algorithm in the ANN which
is also 81.2% given in Ingre and Yadav.53 All these
findings are conducted on the same NSL-KDD bench-
mark data set. The proposed SCAD-RNN model is
more efficient as compared to other binary classifica-
tion models as shown in Figure 5.

Multi-class classification

It has been found from the experiment on KDDTest+

that the SCAD-RNN model has high accuracy as we
set learning rate as 0.5 and hidden node as 80.

Tcomparison of proposed SCAD-RNN model with
machine learning model such as Naive Bayesian, J48,
Support Vector Machine, Multi-layer perceptron, and
other with 10-layer cross-validation using Python
libraries. The hierarchal model and RNN model uni-
formly discover the detection model. The combination of
SCAD and RNN tested on the testing data. The perfor-
mance of binary classification is better as compared to
multi-class classification as shown in Figures 5 and 6.

The SCAD-RNN confusion matrix for multi-class
classification is shown in Table 3. The test demonstrates
that for the KDDTest+ test set at 82.61% and for
KDDTest-21 at 65.89% are better than those achieved
using other machine learning models as mentioned in
Figure 6. The proposed model performs better than the
ANN algorithm,53 which give the accuracy 79.9%. The
FPR and TPR of normal and attacks are shown in
Table 4.

Figure 5. Binary classification comparison of SCAD-RNN and
other models.

Table 2. KDDTest+ confusion matrix for binary classification.

Actual class

Predicted Class
Normal Anomaly

Normal 9467 244
Anomaly 3361 9472

Table 3. KDDTest+ confusion matrix for multi-class
classification.

Actual
class

Predicted
Class

Normal DoS R2L U2R Probe

Normal 9412 80 2 6 211
DoS 1001 6257 113 0 87
R2L 2038 0 702 5 9
U2R 141 0 9 35 15
Probe 214 142 5 0 2060

DoS: Denial of Services; R2L: Root to Local; U2R: User to Root attack.

Figure 6. Multi-class classification comparison of SCAD-RNN
and other models.
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Performance of multi-class classification of SCAD-
RNN with RNN of reduced size39 with KDDCup’99
data set with same testing and training sets gives the fol-
lowing results given as follows. According to the experi-
ment conducted, the SCAD-RNN model achieves the
higher accuracy of 98.02% on the test set, which is
higher than 94.1% accuracy achieved by Sheikhan et
al.39 The SCAD-RNN has a strong model with hier-
archical exploration and soft-computing technique as
compared to RNN with reduced size. The training time
of the proposed model is higher, which can further
reduce with GPU acceleration and parallel processing.

Conclusion and future scope

The proposed SCAD-RNN model has a powerful
intrusion detection modeling capability and high preci-
sion in binary as well as multi-class classification. The
hierarchy of data sets developed using CC.
Furthermore, deep learning approach is applied to
compare the test case with subclasses to decide whether
the test case is anomaly or normal. Compared with tra-
ditionally classified techniques like naive Bayesian, J48,
random forests, and SVM, the achievement is attained
by greater accuracy rates and a small FPR, particularly
under the KDDCup’99 and NSL-KDD data set classi-
fication. The model improves both the TPR for intru-
sion detection and the capacity to detect the intrusion
class efficiently. In future, the potential research contin-
ues to reduce the time for training using GPU and par-
allel processing to prevent explosion and gradients
removal studies to improve the classification efficiency
of hierarchical discovery, long short-term memory
(LSTM), and the bidirectional RNN intrusion sensing
algorithm.
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